Forschende verbessern neuronale Reprogrammierung durch Manipulation der Mitochondrien
Der Ersatz abgestorbener Nervenzellen ist der heilige Gral der Neurowissenschaften. Ein neuer vielversprechender Ansatz ist die Umwandlung von Gliazellen in Nervenzellen. Die Verbesserung der Effizienz dieser Umwandlung nach Gehirnverletzungen ist ein wichtiger Schritt für die Entwicklung zuverlässiger regenerativer Therapien. Forschende des Helmholtz Zentrums München und der Ludwig-Maximilians-Universität München (LMU) identifizierten nun den Zellstoffwechsel als Hürde im Reprogrammierungsprozess. Indem sie mitochondriale Proteine, die in Nervenzellen gehäuft vorkommen, früh im Prozess aktivieren, erzielte die Forschungsgruppe eine schnellere und viermal höhere Umwandlungsrate.
Published: 18.11.2020
Wissenschaftlerinnen und Wissenschaftler des Helmholtz Zentrums München und der LMU haben in den letzten Jahren für die direkte Umwandlung von Gliazellen in Neuronen Pionierarbeit geleistet und diesen innovativen Ansatz auch ursprünglich entdeckt. Gliazellen sind der am häufigsten vorkommende Zelltyp im Gehirn. Besonders ist, dass sie sich nach einer Verletzung vermehren können. Derzeit können Forschende Gliazellen zwar in Neuronen umwandeln, dabei sterben jedoch viele Zellen ab. Dies bedeutet, dass nur wenige Gliazellen zu funktionalen Nervenzellen werden, was den Prozess ineffizient macht.
Neuron
Neuron/-/neuron
Das Neuron ist eine Zelle des Körpers, die auf Signalübertragung spezialisiert ist. Sie wird charakterisiert durch den Empfang und die Weiterleitung elektrischer oder chemischer Signale.
Neuron
Neuron/-/neuron
Das Neuron ist eine Zelle des Körpers, die auf Signalübertragung spezialisiert ist. Sie wird charakterisiert durch den Empfang und die Weiterleitung elektrischer oder chemischer Signale.
Neurodegeneration
Neurodegeneration/-/neurodegeneration
Sammelbegriff für Krankheiten, in deren Verlauf Nervenzellen sukzessive ihre Struktur oder Funktion verlieren, bis sie teilweise sogar daran zugrunde gehen. Vielfach sind falsch gefaltete Proteine der Auslöser – wie etwa bestimmte Formen der Eiweiße Beta-Amyloid und Tau im Falle von Alzheimer. Bei anderen Krankheiten, beispielsweise bei Parkinson oder Chorea Huntington, werden Proteine innerhalb der Neurone nicht richtig abgebaut. In der Folge lagern sich dort toxische Aggregate ab, was zu den jeweiligen Krankheitserscheinungen führt. Während Chorea Huntington eindeutig genetisch bedingt ist, scheint es bei Parkinson und Alzheimer allenfalls bestimmte Ausprägungsformen von Genen zu geben, welche ihre Entstehung begünstigen. Keine dieser neurodegenerativen Erkrankungen kann bisher geheilt werden.
Neuron
Neuron/-/neuron
Das Neuron ist eine Zelle des Körpers, die auf Signalübertragung spezialisiert ist. Sie wird charakterisiert durch den Empfang und die Weiterleitung elektrischer oder chemischer Signale.
Gliazellen
Gliazellen/-/glia cells
Gliazellen stellen neben den Neuronen die zweite Gruppe große Gruppe von Zellen im Gehirn. Sie wurden lange Zeit als die inaktiven Elemente des Gehirns, als „Nervenkitt“ bezeichnet. Heute weiss man, dass die verschiedenen Typen von Gliazellen (Astrozyten, Oligodendrozyten und Mikrogliazellen) klar definierte Aufgaben im Nervensystem erfüllen. So reagieren sie z. B. auf Krankheitserreger, spielen eine wichtige Rolle bei der Ernährung der Nervenzellen oder isolieren Nervenfasern. Ihr Anteil im Vergleich zu den Neuronen liegt bei etwas über 50 Prozent.
Auf neuen Pfaden
Magdalena Götz und ihr Team beschäftigten sich mit möglichen Hürden im Reprogammierungsprozess und begaben auf sich auf einen unerforschten Pfad. Bisherige Studien konzentrierten sich vor allem auf die genetischen Aspekte der direkten neuronalen Umwandlung. Die Gruppe um Magdalena Götz hingegen entschied sich, die Rolle der Mitochondrien und des Zellstoffwechsels genauer zu betrachten. Ausgangspunkt für diese neue Route waren frühere Arbeiten in Zusammenarbeit mit der Gruppe von Marcus Conrad am Helmholtz Zentrum München. Dort zeigte man, dass Zellen aufgrund eines Überschusses an reaktiven Sauerstoffspezies (Sauerstoffradikalen) im Reprogrammierungsprozess absterben.
„Wir gingen davon aus, dass wir die Reprogammierung effizienter machen können, wenn wir den Stoffwechsel von Gliazellen so umwandeln, dass er dem Stoffwechsel von Neuronen gleicht“, erklärt Gianluca Russo, Erstautor der Studie. Auf Grund ihrer bisherigen Daten konzentrierte sich die Gruppe auf Mitochondrien, die „Kraftwerke“ der Zelle. Sie extrahierten die Mitochondrien von Neuronen und Astrozyten (das sind bestimmte Gliazellen) von Mäusen. Dann verglichen sie gemeinsam mit Stefanie Haucks Proteom-Expertengruppe am Helmholtz Zentrum München die Unterschiede in den mitochondrialen Proteinen. Dabei fanden sie heraus, dass sich das Proteom der Mitochondrien von Neuronen und Astrozyten um zwanzig Prozent unterscheiden. Das bedeutet, dass im direkten Vergleich zwischen den beiden Zelltypen jedes fünfte mitochondriale Protein verschieden ist.
Mitochondrien
Mitochondrien/-/mitochondria
Mitochondrien sind Organellen im Inneren einer Zelle, sie werden auch als „Kraftwerk“ der Zellen bezeichnet, da sie diese mit Energie versorgen. Sie haben eine eigene DNA, die nur über die Mutter vererbt wird.
Gliazellen
Gliazellen/-/glia cells
Gliazellen stellen neben den Neuronen die zweite Gruppe große Gruppe von Zellen im Gehirn. Sie wurden lange Zeit als die inaktiven Elemente des Gehirns, als „Nervenkitt“ bezeichnet. Heute weiss man, dass die verschiedenen Typen von Gliazellen (Astrozyten, Oligodendrozyten und Mikrogliazellen) klar definierte Aufgaben im Nervensystem erfüllen. So reagieren sie z. B. auf Krankheitserreger, spielen eine wichtige Rolle bei der Ernährung der Nervenzellen oder isolieren Nervenfasern. Ihr Anteil im Vergleich zu den Neuronen liegt bei etwas über 50 Prozent.
Neuron
Neuron/-/neuron
Das Neuron ist eine Zelle des Körpers, die auf Signalübertragung spezialisiert ist. Sie wird charakterisiert durch den Empfang und die Weiterleitung elektrischer oder chemischer Signale.
Astrozyt
Astrozyt/-/astrocyte, astroglia
Astrozyten sind die größten unter den Gliazellen. Zu ihren Aufgaben gehören z.B. die Immunabwehr (auch Blut-Hirn-Schranke) oder die Wiederaufnahme ausgeschütteter Neurotransmitter (Botenstoffen im Gehirn).
Reprogrammierte Neurone aktivieren nur spät neuronale mitochondriale Proteine
„Da wir wussten, wie sehr sich das mitochondriale Proteom von Neuronen und Astrozyten unterscheidet, wollten wir herausfinden, ob reprogrammierte Neuronen, die aus Astrozyten entstanden sind, tatsächlich das mitochondriale Proteom eines Neurons besitzen oder nicht”, beschreibt Giacomo Masserdotti, einer der Letztautoren, das weitere Vorgehen der Studie. In einem Standard-Reprogrammierungsprozess gelingt es, Gliazellen wie Astrozyten innerhalb von wenigen Tagen in Neuronen umzuwandeln, die sich dann innerhalb von zwei Wochen zu funktionalen Neuronen weiterentwickeln. „Wir sahen, dass Zellen erst relativ spät in dem Reprogrammierungsprozess, nach einer Woche, mitochondriale Proteine besitzen, die typisch für Neuronen sind. Da die meisten Zellen vorher sterben, könnte dies ein Hindernis sein. Zudem zeigen die Zellen, die nicht konvertiert sind, immer noch die mitochondrialen Proteine der Astrozyten.“ Daraus schlossen die Wissenschaftlerinnen und Wissenschaftler, dass das Ausbleiben der Aktivierung neuronaler mitochondrialer Proteine den Reprogrammierungsprozess blockieren könnte.
Neuron
Neuron/-/neuron
Das Neuron ist eine Zelle des Körpers, die auf Signalübertragung spezialisiert ist. Sie wird charakterisiert durch den Empfang und die Weiterleitung elektrischer oder chemischer Signale.
Astrozyt
Astrozyt/-/astrocyte, astroglia
Astrozyten sind die größten unter den Gliazellen. Zu ihren Aufgaben gehören z.B. die Immunabwehr (auch Blut-Hirn-Schranke) oder die Wiederaufnahme ausgeschütteter Neurotransmitter (Botenstoffen im Gehirn).
Gliazellen
Gliazellen/-/glia cells
Gliazellen stellen neben den Neuronen die zweite Gruppe große Gruppe von Zellen im Gehirn. Sie wurden lange Zeit als die inaktiven Elemente des Gehirns, als „Nervenkitt“ bezeichnet. Heute weiss man, dass die verschiedenen Typen von Gliazellen (Astrozyten, Oligodendrozyten und Mikrogliazellen) klar definierte Aufgaben im Nervensystem erfüllen. So reagieren sie z. B. auf Krankheitserreger, spielen eine wichtige Rolle bei der Ernährung der Nervenzellen oder isolieren Nervenfasern. Ihr Anteil im Vergleich zu den Neuronen liegt bei etwas über 50 Prozent.
Effizientere Umwandlung durch Manipulation des Stoffwechsels
Zur Überwindung dieser Hürde nutzte die Gruppe CRISPR/Cas9-Technologie in enger Zusammenarbeit mit den Arbeitsgruppen von Stefan Stricker und Wolfgang Wurst am Helmholtz Zentrum München. Mit neuen Tools, die diese Gruppe zur Aktivierung von Genen entwickelt hat, konnten mitochondriale Proteine, die gehäuft in Neuronen vorkommen, in einem frühen Stadium des Reprogrammierungsprozesses von Astrozyten in Neuronen angeschaltet werden. Die Manipulation von nur ein bis zwei mitochondrialen Proteinen führte zu einer viermal höheren Anzahl von Neuronen. Darüber hinaus entwickelten sich die Neuronen schneller und reiften auch schneller aus, wie die fortlaufende Live-Bildgebung zeigte.
„Ich war erstaunt, dass die geänderte Expression so weniger mitochondrialer Proteine die Umwandlung derart beschleunigte“, sagt Magdalena Götz, Leiterin der Studie. „Dies zeigt uns, wie wichtig die Unterschiede der mitochondrialen Proteine bei verschiedenen Zellen sind. Und tatsächlich sind wir gerade gemeinsam mit dem Proteom-Expertenteam von Stefanie Hauck am Helmholtz Zentrum München dabei, weitere organellare Unterschiede zwischen den Zelltypen zu entdecken. Sie unterscheiden sich teilweise in bis zu 70 Prozent. Mit diesem Wissen werden wir künftig reprogrammierte Neurone bilden können, die den körpereigenen Neuronen so ähnlich wie möglich sind – nach Gehirnverletzungen in vivo.“
Gen
Gen/-/gene
Informationseinheit auf der DNA. Den Kernbestandteil eines Gens übersetzen darauf spezialisierte Enzyme in so genannte Ribonukleinsäure (RNA). Während manche Ribonukleinsäuren selbst wichtige Funktionen in der Zelle ausführen, geben andere die Reihenfolge vor, in der die Zelle einzelne Aminosäuren zu einem bestimmten Protein zusammenbauen soll. Das Gen liefert also den Code für dieses Protein. Zusätzlich gehören zu einem Gen noch regulatorische Elemente auf der DNA, die sicherstellen, dass das Gen genau dann abgelesen wird, wenn die Zelle oder der Organismus dessen Produkt auch wirklich benötigen.
Neuron
Neuron/-/neuron
Das Neuron ist eine Zelle des Körpers, die auf Signalübertragung spezialisiert ist. Sie wird charakterisiert durch den Empfang und die Weiterleitung elektrischer oder chemischer Signale.
Astrozyt
Astrozyt/-/astrocyte, astroglia
Astrozyten sind die größten unter den Gliazellen. Zu ihren Aufgaben gehören z.B. die Immunabwehr (auch Blut-Hirn-Schranke) oder die Wiederaufnahme ausgeschütteter Neurotransmitter (Botenstoffen im Gehirn).
Neuron
Neuron/-/neuron
Das Neuron ist eine Zelle des Körpers, die auf Signalübertragung spezialisiert ist. Sie wird charakterisiert durch den Empfang und die Weiterleitung elektrischer oder chemischer Signale.
Originalpublikation
Russo et al., 2020: CRISPR-mediated induction of neuron-enriched mitochondrial proteins boosts direct glia-to-neuron conversion. Cell Stem Cell, DOI: 10.1016/j.stem.2020.10.015