Wenn Serotonin das Licht dimmt
Ein bestimmter Rezeptor für den Botenstoff Serotonin entscheidet darüber, wie wichtig visuelle Reize genommen werden. Das erklärt die Wirkung mancher Drogen und könnte helfen, psychische Erkrankungen zu verstehen.
Published: 18.09.2024
In unserem Gehirn werden Signale nicht immer auf dieselbe Weise verarbeitet: Bestimmte Rezeptoren modulieren diese Verarbeitungsprozesse. Sie beeinflussen so unsere Stimmung, Wahrnehmung und unser Verhalten auf vielfältige Weise. Zu dieser Gruppe gehört auch der 5-HT2A-Rezeptor, der eine Besonderheit hat: Er dämpft eintreffende visuelle Informationen, sodass unser Gehirn mehr Raum für interne Prozesse und Interpretationen hat. Diese Erkenntnis eines Forschungsteams der Ruhr-Universität Bochum könnte auch die Wirkung von Drogen wie LSD erklären: Wird der Rezeptor dadurch überaktiviert, werden externe Sinneseindrücke unterdrückt und vermehrt eigene Bilder erzeugt. „Ein wenig so, als würde unser Gehirn mit sich selbst reden“, erklärt Prof. Dr. Dirk Jancke. Die Ergebnisse, die in der Zeitschrift Nature Communications vom 14. September 2024 veröffentlicht sind, liefern neue Einsichten für unser Verständnis von Wahrnehmung und psychischen Erkrankungen.
Rezeptor
Rezeptor/-/receptor
Signalempfänger in der Zellmembran. Chemisch gesehen ein Protein, das dafür verantwortlich ist, dass eine Zelle ein externes Signal mit einer bestimmten Reaktion beantwortet. Das externe Signal kann beispielsweise ein chemischer Botenstoff (Transmitter) sein, den eine aktivierte Nervenzelle in den synaptischen Spalt entlässt. Ein Rezeptor in der Membran der nachgeschalteten Zelle erkennt das Signal und sorgt dafür, dass diese Zelle ebenfalls aktiviert wird. Rezeptoren sind sowohl spezifisch für die Signalsubstanzen, auf die sie reagieren, als auch in Bezug auf die Antwortprozesse, die sie auslösen.
Wahrnehmung
Wahrnehmung/Perceptio/perception
Der Begriff beschreibt den komplexen Prozess der Informationsgewinnung und –verarbeitung von Reizen aus der Umwelt sowie von inneren Zuständen eines Lebewesens. Das Gehirn kombiniert die Informationen, die teils bewusst und teils unbewusst wahrgenommen werden, zu einem subjektiv sinnvollen Gesamteindruck. Wenn die Daten, die es von den Sinnesorganen erhält, hierfür nicht ausreichen, ergänzt es diese mit Erfahrungswerten. Dies kann zu Fehlinterpretationen führen und erklärt, warum wir optischen Täuschungen erliegen oder auf Zaubertricks hereinfallen.
Rezeptor
Rezeptor/-/receptor
Signalempfänger in der Zellmembran. Chemisch gesehen ein Protein, das dafür verantwortlich ist, dass eine Zelle ein externes Signal mit einer bestimmten Reaktion beantwortet. Das externe Signal kann beispielsweise ein chemischer Botenstoff (Transmitter) sein, den eine aktivierte Nervenzelle in den synaptischen Spalt entlässt. Ein Rezeptor in der Membran der nachgeschalteten Zelle erkennt das Signal und sorgt dafür, dass diese Zelle ebenfalls aktiviert wird. Rezeptoren sind sowohl spezifisch für die Signalsubstanzen, auf die sie reagieren, als auch in Bezug auf die Antwortprozesse, die sie auslösen.
Im Dschungel der Serotonin-Rezeptoren
Rezeptor
Rezeptor/-/receptor
Signalempfänger in der Zellmembran. Chemisch gesehen ein Protein, das dafür verantwortlich ist, dass eine Zelle ein externes Signal mit einer bestimmten Reaktion beantwortet. Das externe Signal kann beispielsweise ein chemischer Botenstoff (Transmitter) sein, den eine aktivierte Nervenzelle in den synaptischen Spalt entlässt. Ein Rezeptor in der Membran der nachgeschalteten Zelle erkennt das Signal und sorgt dafür, dass diese Zelle ebenfalls aktiviert wird. Rezeptoren sind sowohl spezifisch für die Signalsubstanzen, auf die sie reagieren, als auch in Bezug auf die Antwortprozesse, die sie auslösen.
Neuron
Neuron/-/neuron
Das Neuron ist eine Zelle des Körpers, die auf Signalübertragung spezialisiert ist. Sie wird charakterisiert durch den Empfang und die Weiterleitung elektrischer oder chemischer Signale.
Serotonin
Serotonin/-/serotonin
Ein Neurotransmitter, der bei der Informationsübertragung zwischen Neuronen an deren Synapsen als Botenstoff dient. Er wird primär in den Raphé-Kernen des Mesencephalons produziert und spielt eine maßgebliche Rolle bei Schlaf und Wachsamkeit, sowie der emotionalen Befindlichkeit.
Mit Licht gegen die Dunkelheit im Gehirn
Die Untersuchung der Wirkung von Rezeptoren im Gehirn ist daher keine einfache Aufgabe. Herkömmliche pharmakologische Methoden zur Aufklärung neuronaler Netzwerkfunktion von Rezeptoren sind begrenzt. Sie sind meist nicht spezifisch genug und vor allem schlecht zu timen. Die Arbeitsgruppe um Prof. Dr. Stefan Herlitze hat daher alternative Untersuchungsmethoden entwickelt. Dabei werden Lichtrezeptor-Proteine mithilfe von Viren in Nervenzellen eingebracht. Die Lichtrezeptor-Proteine sind gentechnisch so modifiziert, dass sie Funktionen eines ausgewählten Rezeptortyps imitieren können. Der ausgewählte Rezeptortyp wird damit wie über einen Lichtschalter an- und abschaltbar, präzise innerhalb weniger Millisekunden. Mäusen werden dazu hauchdünne Lichtleiter implantiert, die – über LEDs gesteuert – Licht der gewünschten Wellenlänge an die entsprechende Stelle im Gehirn bringen und dort den Rezeptor aktivieren.
Rezeptor
Rezeptor/-/receptor
Signalempfänger in der Zellmembran. Chemisch gesehen ein Protein, das dafür verantwortlich ist, dass eine Zelle ein externes Signal mit einer bestimmten Reaktion beantwortet. Das externe Signal kann beispielsweise ein chemischer Botenstoff (Transmitter) sein, den eine aktivierte Nervenzelle in den synaptischen Spalt entlässt. Ein Rezeptor in der Membran der nachgeschalteten Zelle erkennt das Signal und sorgt dafür, dass diese Zelle ebenfalls aktiviert wird. Rezeptoren sind sowohl spezifisch für die Signalsubstanzen, auf die sie reagieren, als auch in Bezug auf die Antwortprozesse, die sie auslösen.
Neuron
Neuron/-/neuron
Das Neuron ist eine Zelle des Körpers, die auf Signalübertragung spezialisiert ist. Sie wird charakterisiert durch den Empfang und die Weiterleitung elektrischer oder chemischer Signale.
Rezeptor
Rezeptor/-/receptor
Signalempfänger in der Zellmembran. Chemisch gesehen ein Protein, das dafür verantwortlich ist, dass eine Zelle ein externes Signal mit einer bestimmten Reaktion beantwortet. Das externe Signal kann beispielsweise ein chemischer Botenstoff (Transmitter) sein, den eine aktivierte Nervenzelle in den synaptischen Spalt entlässt. Ein Rezeptor in der Membran der nachgeschalteten Zelle erkennt das Signal und sorgt dafür, dass diese Zelle ebenfalls aktiviert wird. Rezeptoren sind sowohl spezifisch für die Signalsubstanzen, auf die sie reagieren, als auch in Bezug auf die Antwortprozesse, die sie auslösen.
5-HT2A Rezeptoren regulieren die Empfindsamkeit für sensorische Eingänge
Die Forschenden fanden auf diese Weise heraus, dass der 5-HT2A Rezeptor selektiv die Stärke eintreffender Sehinformation unterdrückt. „Erstaunlicherweise geschieht dies, ohne andere, parallel ablaufende Prozesse zu hemmen“, berichtet Dr. Ruxandra Barzan, Erstautorin der Studie. Das Gehirn reduziert somit die Bedeutung aktueller sensorischer Eingänge zugunsten interner Kommunikation und Interpretationsprozesse. „Das heißt, wir haben einen Mechanismus entdeckt, der reguliert, wie wichtig eingehende Informationen genommen werden“, sagt Ruxandra Barzan.
Rezeptor
Rezeptor/-/receptor
Signalempfänger in der Zellmembran. Chemisch gesehen ein Protein, das dafür verantwortlich ist, dass eine Zelle ein externes Signal mit einer bestimmten Reaktion beantwortet. Das externe Signal kann beispielsweise ein chemischer Botenstoff (Transmitter) sein, den eine aktivierte Nervenzelle in den synaptischen Spalt entlässt. Ein Rezeptor in der Membran der nachgeschalteten Zelle erkennt das Signal und sorgt dafür, dass diese Zelle ebenfalls aktiviert wird. Rezeptoren sind sowohl spezifisch für die Signalsubstanzen, auf die sie reagieren, als auch in Bezug auf die Antwortprozesse, die sie auslösen.
Halluzinationen verstehen, Therapieansätze entwickeln
Halluzinationen, die durch Drogen wie LSD ausgelöst werden, könne man daher als eine Art Selbstgespräch interpretieren, so Dirk Jancke. „Durch die Überaktivierung unterdrückt der 5-HT2A-Rezeptor von außen kommende Sinneseindrücke, und das Gehirn ersetzt sie durch eigene Produktionen.“ Im gesunden Gehirn aktiviert Serotonin verschiedene Rezeptortypen gleichzeitig, was gewährleistet, dass Informationsflüsse in ihrer Gewichtung ausbalanciert sind. Bei psychischen Erkrankungen kann diese Balance gestört sein. Die Erkenntnisse aus der Studie könnten dazu beitragen, neue Therapien zu entwickeln, bei denen gezielt ausgewählte Rezeptoren aktiviert werden, um das Gleichgewicht wiederherzustellen, hoffen die Forschenden. Psychedelische Drogen, die beispielsweise selektiv den 5-HT2A Rezeptor ansprechen, könnten unter fachärztlicher Aufsicht in geringer Dosierung und in definierten Lernkontexten zu Therapiezwecken genutzt werden, um Disbalancen in der Rezeptoraktivierung langfristig wieder auszugleichen.
Serotonin
Serotonin/-/serotonin
Ein Neurotransmitter, der bei der Informationsübertragung zwischen Neuronen an deren Synapsen als Botenstoff dient. Er wird primär in den Raphé-Kernen des Mesencephalons produziert und spielt eine maßgebliche Rolle bei Schlaf und Wachsamkeit, sowie der emotionalen Befindlichkeit.
Rezeptor
Rezeptor/-/receptor
Signalempfänger in der Zellmembran. Chemisch gesehen ein Protein, das dafür verantwortlich ist, dass eine Zelle ein externes Signal mit einer bestimmten Reaktion beantwortet. Das externe Signal kann beispielsweise ein chemischer Botenstoff (Transmitter) sein, den eine aktivierte Nervenzelle in den synaptischen Spalt entlässt. Ein Rezeptor in der Membran der nachgeschalteten Zelle erkennt das Signal und sorgt dafür, dass diese Zelle ebenfalls aktiviert wird. Rezeptoren sind sowohl spezifisch für die Signalsubstanzen, auf die sie reagieren, als auch in Bezug auf die Antwortprozesse, die sie auslösen.
Rezeptor
Rezeptor/-/receptor
Signalempfänger in der Zellmembran. Chemisch gesehen ein Protein, das dafür verantwortlich ist, dass eine Zelle ein externes Signal mit einer bestimmten Reaktion beantwortet. Das externe Signal kann beispielsweise ein chemischer Botenstoff (Transmitter) sein, den eine aktivierte Nervenzelle in den synaptischen Spalt entlässt. Ein Rezeptor in der Membran der nachgeschalteten Zelle erkennt das Signal und sorgt dafür, dass diese Zelle ebenfalls aktiviert wird. Rezeptoren sind sowohl spezifisch für die Signalsubstanzen, auf die sie reagieren, als auch in Bezug auf die Antwortprozesse, die sie auslösen.
Künstliche Intelligenz trifft auf Neurobiologie
Um die komplexen Zusammenhänge zwischen den verschiedenen Zelltypen und den Rezeptoren im Gehirn besser zu verstehen, setzten die Forschenden Computermodelle ein, die wesentliche Merkmale neuronaler Schaltkreise vereinfacht darstellen. Die Forschenden prüften die Hypothese, dass der Rezeptor die gefundenen Effekte nur dann entfaltet, wenn er gleichzeitig in hemmenden und aktivierenden Nervenzellen aktiviert wird. Diese Hypothese konnte durch die Modelle gestützt werden. Die Arbeitsgruppe um Prof. Dr. Sen Cheng fand in ihren Simulationen heraus, dass nur die gleichzeitige Rezeptoraktivierung in hemmenden und erregenden Zellen zu Interaktionen im Netzwerk führen, die die experimentellen Befunde abbilden.
Rezeptor
Rezeptor/-/receptor
Signalempfänger in der Zellmembran. Chemisch gesehen ein Protein, das dafür verantwortlich ist, dass eine Zelle ein externes Signal mit einer bestimmten Reaktion beantwortet. Das externe Signal kann beispielsweise ein chemischer Botenstoff (Transmitter) sein, den eine aktivierte Nervenzelle in den synaptischen Spalt entlässt. Ein Rezeptor in der Membran der nachgeschalteten Zelle erkennt das Signal und sorgt dafür, dass diese Zelle ebenfalls aktiviert wird. Rezeptoren sind sowohl spezifisch für die Signalsubstanzen, auf die sie reagieren, als auch in Bezug auf die Antwortprozesse, die sie auslösen.
Rezeptor
Rezeptor/-/receptor
Signalempfänger in der Zellmembran. Chemisch gesehen ein Protein, das dafür verantwortlich ist, dass eine Zelle ein externes Signal mit einer bestimmten Reaktion beantwortet. Das externe Signal kann beispielsweise ein chemischer Botenstoff (Transmitter) sein, den eine aktivierte Nervenzelle in den synaptischen Spalt entlässt. Ein Rezeptor in der Membran der nachgeschalteten Zelle erkennt das Signal und sorgt dafür, dass diese Zelle ebenfalls aktiviert wird. Rezeptoren sind sowohl spezifisch für die Signalsubstanzen, auf die sie reagieren, als auch in Bezug auf die Antwortprozesse, die sie auslösen.
Neuron
Neuron/-/neuron
Das Neuron ist eine Zelle des Körpers, die auf Signalübertragung spezialisiert ist. Sie wird charakterisiert durch den Empfang und die Weiterleitung elektrischer oder chemischer Signale.
Originalpublikation
Ruxandra Barzan et al.: Gain Control of Sensory Input Across Polysynaptic Circuitries in Mouse Visual Cortex by a Single G Protein-Coupled Receptor Type (5-HT2A), in: Nature Communications, 2024, DOI: 10.1038/s41467-024-51861-1
Cortex
Großhirnrinde/Cortex cerebri/cerebral cortex
Der Cortex cerebri, kurz Cortex genannt, bezeichnet die äußerste Schicht des Großhirns. Sie ist 2,5 mm bis 5 mm dick und reich an Nervenzellen. Die Großhirnrinde ist stark gefaltet, vergleichbar einem Taschentuch in einem Becher. So entstehen zahlreiche Windungen (Gyri), Spalten (Fissurae) und Furchen (Sulci). Ausgefaltet beträgt die Oberfläche des Cortex ca 1.800 cm2.